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Abstract

Natural convection flows in a square cavity filled with a porous matrix has been studied numerically using penalty finite element
method for uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical
walls. Darcy–Forchheimer model is used to simulate the momentum transfer in the porous medium. The numerical procedure is adopted
in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 103 6 Ra 6 106, Darcy number
Da, 10�5

6 Da 6 10�3, and Prandtl number Pr, 0.71 6 Pr 6 10) with respect to continuous and discontinuous thermal boundary con-
ditions. Numerical results are presented in terms of stream functions, temperature profiles and Nusselt numbers. Non-uniform heating of
the bottom wall produces greater heat transfer rate at the center of the bottom wall than uniform heating case for all Rayleigh numbers
but average Nusselt number shows overall lower heat transfer rate for non-uniform heating case. It has been found that the heat transfer
is primarily due to conduction for Da 6 10�5 irrespective of Ra and Pr. The conductive heat transfer regime as a function of Ra has also
been reported for DaP 10�4. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for con-
vection dominated regimes the power law correlations between average Nusselt number and Rayleigh numbers are presented.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The convective motion driven by buoyancy forces is
well-known natural phenomena, and has attracted many
researchers’ interests. In this context, buoyancy driven phe-
nomena in porous media are actively under investigation.
Non-Darcy effects on natural convection in porous media
have received a great deal of attention in recent years. This
is due to a large number of technical applications, such as,
fluid flow in geothermal reservoirs, separation processes in
chemical industries, dispersion of chemical contaminants
through water saturated soil, solidification of casting,
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migration of moisture in grain storage system, crude oil
production, etc. Comprehensive literature survey con-
cerned with this subject is given by Kaviany [1], Nield
and Bejan [2], Ingham and Pop [3], Vafai [4], Pop and Ing-
ham [5], Bejan and Kraus [6], Ingham et al. [7] and Bejan
et al. [8].

The buoyancy driven convection in a porous cavity
heated differentially in the horizontal side has been ana-
lyzed by Walker and Homsy [9] by a number of different
techniques. The results obtained are fairly good agree-
ment with each other as well as experimental results. The
Brinkman-extended Darcy model has been considered by
Tong and Subramanian [10], and Lauriat and Prasad [11]
to examine the buoyancy effects on free convection in a ver-
tical cavity. This model has been introduced by Brinkman
[12] in order to account for the transition from Darcy flow
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Fig. 1. Schematic diagram of the physical system.

Nomenclature

Da Darcy number
g acceleration due to gravity (ms�2)
J Jacobian of residual equations
k thermal conductivity (W m�1 K�1)
K permeability of the porous medium
L side of the square cavity (m)
N total number of nodes
Nu local Nusselt number
p pressure (Pa)
P dimensionless pressure
Pr Prandtl number
R residual of weak form
Ra Rayleigh number
T temperature (K)
Th temperature of hot bottom wall (K)
Tc temperature of cold vertical wall (K)
u x component of velocity
U x component of dimensionless velocity
v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x coordinate
Y dimensionless distance along y coordinate

Greek symbols

a thermal diffusivity (m2 s�1)
b volume expansion coefficient (K�1)
c penalty parameter
h dimensionless temperature
m kinematic viscosity (m2 s�1)
q density (kg m�3)
U basis functions
w stream function
n horizontal coordinate in a unit square
g vertical coordinate in a unit square

Subscripts

b bottom wall
i residual number
k node number
s side wall

Superscript

n Newton iterative index
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to highly viscous flow (without porous matrix), in the limit
of extremely high permeability. However, Brinkman model
does not account adequately for the transition from porous
medium flow to pure fluid flow as the permeability of the
porous medium increases. A model that bridges the entire
gap between the Darcy and Navier Stokes equations is
the Darcy–Forchheimer model which was developed by
Vafai and Tien [13]. It is known that the Darcy’s law is
an empirical formula relating the pressure gradient, the
gravitational force and the bulk viscous resistance in por-
ous media. Thus, the mathematical formulations based
on Dracy’s law will neglect the effects of a solid boundary
or the inertia forces on fluid flow and heat transfer through
porous media. In general, the inertia and boundary effects
become significant when the fluid velocity is high and the
heat transfer is considered in the near wall region [14]. In
addition, the Darcy–Forchheimer model describes the
effect of inertia as well as viscous forces in porous media
and was used by Poulikakos and Bejan [15,16], Becker-
mann et al. [17], and Lauriat and Prasad [18] to examine
the natural convection in a vertical porous layer and in a
vertical enclosure filled with a porous medium. Further,
natural convection in a square enclosure filled with a fluid
saturated porous medium using a thermal non-equilibrium
model has been investigated by Mohammad [19] for Brink-
man-extended Darcy flow and by Baytas and Pop [20] for
Darcy flow. Also, the effect of viscous dissipation has been
considered for Darcy model by Saeid and Pop [21]. In con-
trast, very few investigations have been made in the past to
focus on natural convection in porous medium due to uni-
form heating from below as reported by Horne and O’sul-
livan [22], Caltagirone [23] and Straus [24].

The aim of the present investigation is to study a natural
convective flow in a square cavity filled with a fluid satu-
rated porous medium when the bottom wall is heated (uni-
formly and non-uniformly) and the top wall is well
insulated, while the two vertical walls are cooled by means
of two constant temperature baths (see Fig. 1). The Darcy–
Forchheimer model without the Forchheimer’s inertia term
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has been adopted. In case of uniformly heated bottom wall,
the finite discontinuities in temperature distribution appear
at the edges of the bottom wall. The discontinuities can be
removed by choosing a non-uniform temperature distribu-
tion along the bottom wall (i.e., non-uniformly heated bot-
tom wall) as discussed by Minkowycz et al. [25], where the
investigation is made for a mixed convection flow on a
heated or cooled vertical plate. In our current study, we
have used Galerkin finite element method with penalty
parameter to solve the non-linear coupled partial differen-
tial equations governing flow and temperature fields for
both uniform and non-uniform temperature distribution
prescribed at the bottom wall. The momentum transfer in
the porous medium is based on the Darcy–Forchheimer
model. Numerical results are obtained to display the circu-
lations and temperature distributions within the cavity and
the heat transfer rate at the heated wall in terms of local
and average Nusselt numbers.

2. Governing equations

Consider a fluid saturated porous medium enclosed in a
square cavity of side L. It is assumed that the bottom wall
is heated uniformly and non-uniformly while the top wall is
well insulated and the vertical walls are cooled to a con-
stant temperature. The geometry of this cavity together
with the coordinate system is illustrated in Fig. 1. The
physical properties are assumed to be constant except the
density in the buoyancy force term which is satisfied by
the Boussinesq’s approximation. Further, it is assumed
that the temperature of the fluid phase is equal to the tem-
perature of the solid phase everywhere in the porous
region, and local thermal equilibrium (LTE) model is appli-
cable in the present investigation [2]. Also, a velocity
square term could be incorporated in the momentum equa-
tions to model the inertia effect which is more important
for non-Darcy effect on the convective boundary layer flow
over the surface of a body embedded in a high porosity
media. However, we have neglected this term in the present
study because we are dealing with the natural convection
flow in a cavity filled with a porous medium. Under these
assumptions and following Vafai and Tien [13] with the
Forchheimer’s inertia term neglected, the governing equa-
tions for steady two-dimensional natural convection flow
in the porous cavity using conservation of mass, momen-
tum and energy can be written as: [26]
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with boundary conditions

uðx; 0Þ ¼ uðx; LÞ ¼ uð0; yÞ ¼ uðL; yÞ ¼ 0;

vðx; 0Þ ¼ vðx; LÞ ¼ vð0; yÞ ¼ vðL; yÞ ¼ 0;

T ðx; 0Þ ¼ T h; or T ðx; 0Þ ¼ ðT h � T cÞ sin
px
L

� �
þ T c;

oT
oy

ðx; LÞ ¼ 0; T ð0; yÞ ¼ T ðL; yÞ ¼ T c; ð5Þ

where x and y are the distances measured along the hori-
zontal and vertical directions, respectively; u and v are
the velocity components in the x- and y- directions, respec-
tively; T denotes the temperature; m and a are kinematic
viscosity and thermal diffusivity, respectively; K is the med-
ium permeability; p is the pressure and q is the density; Th

and Tc are the temperatures at hot bottom wall and cold
vertical walls, respectively; L is the side of the square
cavity.

Using the following change of variables,

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
; h ¼ T � T c

T h � T c

P ¼ pL2

qa2
; Pr ¼ m

a
; Da ¼ K

L2
; Ra ¼ gbðT h � T cÞL3Pr

m2

ð6Þ
the governing equations (1)–(4) reduce to non-dimensional
form:
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with the boundary conditions

UðX ; 0Þ ¼ UðX ; 1Þ ¼ Uð0; Y Þ ¼ Uð1; Y Þ ¼ 0;

V ðX ; 0Þ ¼ V ðX ; 1Þ ¼ V ð0; Y Þ ¼ V ð1; Y Þ ¼ 0;

hðX ; 0Þ ¼ 1; or hðX ; 0Þ ¼ sinðpX Þ;

hð0; Y Þ ¼ hð1; Y Þ ¼ 0;
oh
oY

ðX ; 1Þ ¼ 0.

ð11Þ

Here, X and Y are dimensionless coordinates varying along
horizontal and vertical directions, respectively; U and V
are, dimensionless velocity components in the X- and
Y-directions, respectively; h is the dimensionless tempera-
ture; P is the dimensionless pressure; Ra, Pr and Da are
Rayleigh, Prandtl and Darcy numbers, respectively.

3. Solution procedure

The momentum and energy balance Eqs. (8)–(10) are
solved using the Galerkin finite element method. The
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continuity Eq. (7) will be used as a constraint due to mass
conservation and this constraint may be used to obtain
the pressure distribution [27,28]. In order to solve Eqs.
(8)–(10), we use the penalty finite element method where
the pressure P is eliminated by a penalty parameter c and
the incompressibility criteria given by Eq. (7) [28] which
results in

P ¼ �c
oU
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þ oV
oY

� �
. ð12Þ

The continuity Eq. (7) is automatically satisfied for large
values of c. Typical values of c that yield consistent solu-
tions are 107 [27,28].

Using Eq. (12), the momentum balance Eqs. (8) and (9)
reduce to
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Expanding the velocity components (U,V) and temperature
(h) using basis set fUkgNk¼1 as,
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for

0 6 X ; Y 6 1;

the Galerkin finite element method yields the following
non-linear residual equations for Eqs. (13), (14) and (10),
respectively, at nodes of internal domain X:
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Bi-quadratic basis functions with three point Gaussian
quadrature is used to evaluate the integrals in the residual
equations. In Eqs. (16) and (17), the second term contain-
ing the penalty parameter (c) are evaluated with two point
Gaussian quadrature (reduced integration penalty formu-
lation [28]). The motivation for reduced integration is given
below. The matrix vector notation for the penalty finite ele-
ment equations of the residuals, i.e., Eqs. (16)–(18) may be
expressed in matrix vector notation as

ðK1 þ cK2Þa ¼ F; ð19Þ
where a denotes the unknown vector, K1, K2 are the matri-
ces obtained from the Jacobian of the residuals, As c tends
to a large value (�107), the constraint equation (i.e., conti-
nuity equation) is satisfied better, which in turn causes the
magnitude of K1 is negligible when compared with cK2

resulting in

K2a ¼ F

c
. ð20Þ

This implies that as c tends to infinity, governing equations
are left with only the constraint condition, i.e, the continu-
ity equation. Hence, the contributions from the momentum
and energy conservations are completely lost. In addition,
as K2 is non-singular for large c the resulting solution ob-
tained from Eq. (20) is trivial. To obtain the non-trivial
solutions for large c(�107) the matrix K2 is needed to be
a singular matrix. This is obtained by using two point
Gaussian quadrature for K2 and three point Gaussian
quadrature for K1. In the absence of the above reduced
integration method velocities are underestimated [28].

The non-linear residual equations (16)–(18) are solved
using a Newton–Raphson procedure to determine the
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coefficients of the expansions in Eq. (15). At each iteration,
the linear (3N · 3N) system

JðanÞ½an � anþ1� ¼ RðanÞ; ð21Þ

is solved where n is the iterative index. The elements of the
Jacobian matrix, J(an) contains the derivatives of the resid-
ual equations with respect to velocity components (Uj)’s,
(Vj)’s and the temperature (hj’s) and R(an) is the vector of
residuals. The linear system for each iteration is based on
efficient node numbering of the elements such that the jaco-
bian forms a banded matrix. The iterative process is termi-
nated with the convergence criterion ½

P
ðRðjÞ

i Þ2�0:5 6 10�5

using two-norm of residual vectors.
We have used nine node bi-quadratic elements with each

element mapped using iso-parametric mapping [28] from
X–Y to a unit square n–g domain.

Subsequently, the domain integrals in the residual equa-
tions are evaluated using nine node bi-quadratic basis func-
tions in n–g domain as:
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where Ui(n,g) are the local bi-quadratic basis functions on
the n–g domain. The integrals in Eqs. (16)–(18) can be eval-
uated in n–g domain using following relationships:
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4. Evaluation of stream function and Nusselt number

4.1. Stream function

The fluid motion is displayed using the stream function
w obtained from velocity components U and V. The rela-
tionships between stream function, w [29] and velocity
components for two-dimensional flows are

U ¼ ow
oY

; V ¼ � ow
oX

; ð24Þ

which yield a single equation

o2w

oX 2
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oY 2
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� oV
oX

. ð25Þ
Using the above definition of the stream function, the po-
sitive sign of w denotes anticlockwise circulation and the
clockwise circulation is represented by the negative sign
of w. Expanding the stream function (w) using the basis
set fUkgNk¼1 as w ¼

PN
k¼1wkUkðX ; Y Þ and the relation for

U, V from Eq. (15), the Galerkin finite element method
yield the following linear residual equations for Eq. (25).
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The no-slip condition is valid at all boundaries as there is no
cross flow, hence w = 0 is used as residual equations at the
nodes for the boundaries. The biquadratic basis function is
used to evaluate the integrals in Eq. (26) and w’s are ob-
tained by solving the N linear residual equations (26).

4.2. Nusselt number

The heat transfer coefficient in terms of the local Nusselt
number (Nu) is defined by

Nu ¼ � oh
on

; ð27Þ

where n denotes the normal direction on a plane. The nor-
mal derivative is evaluated by the bi-quadratics basis set in
n–g domain using Eqs. (22) and (23). The local Nusselt
numbers at bottom wall (Nub) and at the side wall (Nus)
are defined as
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i¼1

hi
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and
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The average Nusselt numbers at the bottom and side walls
are

Nub ¼
R 1

0
Nub dX

X j10
¼
Z 1
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Nub dX ð30Þ

and
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5. Results and discussion

5.1. Numerical tests

The computational domain consists of 20 · 20 bi-qua-
dratic elements which correspond to 41 · 41 grid points.
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The bi-quadratic elements with lesser number of nodes
smoothly capture the non-linear variations of the field vari-
ables which are in contrast with finite difference/finite vol-
ume solutions available in Refs. [10,18]. In order to assess
the accuracy of our numerical procedure, we have tested
our algorithm based on the grid size (41 · 41) for a square
enclosure with a side wall heated and the results are in well
agreement with the work of Lauriat and Prasad [18]. Com-
parisons are not shown here for the brevity of the
manuscript.

Computations have been carried out for various values
of Ra = 103–106 and Pr = 0.71–10 with uniform and non-
uniform bottom wall heating where side walls are cooled
and the top wall is well insulated. The jump discontinuities
in Dirichlet type of wall boundary conditions at the corner
points (see Fig. 1) correspond to computational singulari-
ties. In particular, the singularity at the corner nodes of
the bottom wall needs special attention. The grid size
dependent effect of the temperature discontinuity at the
corner points upon the local (and the overall) Nusselt num-
bers tend to increase as the mesh spacing at the corner is
reduced. One of the ways for handling the problem is
assuming the average temperature of the two walls at the
corner and keeping the adjacent grid-nodes at the respec-
tive wall temperatures. Alternatively, based on earlier work
by Ganzarolli and Milanez [30], this procedure is still grid
dependent unless a sufficiently refined mesh is imple-
mented. Accordingly, once any corner formed by the inter-
section of two differently heated boundary walls is assumed
at the average temperature of the adjacent walls, the opti-
mal grid size obtained for each configuration corresponds
to the mesh spacing over which further grid refinements
lead to grid invariant results in both heat transfer rates
and flow fields. The similar observations are also reported
in an earlier work [31].

In the current investigation, Gaussian quadrature based
finite element method provides the smooth solutions at the
interior domain including the corner regions as evaluation
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Fig. 2. Contour plots for uniform bottom heating, h(X,0) = 1, with Pr = 0.71 a
negative and positive signs of stream functions, respectively.
of residual depends on interior gauss points and thus the
effect of corner nodes are less pronounced in the final solu-
tion. In general, the Nusselt numbers for finite difference/
finite volume based methods are calculated at any surface
using some interpolation functions which are now avoided
in the current work. The present finite element approach
offers special advantage on evaluation of local Nusselt num-
ber at the bottom and side walls as the element basis func-
tions are used to evaluate the heat flux. Note that, the
number of grid points in the current study is 41 · 41 and
these nodal numbers are in agreement with the number of
grid points 33 · 33 as illustrated by Corcione [31]. In addi-
tion, the percent changes of the average Nusselt numbers
(Nub and Nus) and the maximum horizontal and vertical
dimensionless velocity components at an assigned vertical
and horizontal plane across the cavity are within 0.1–1%.

5.2. Effects of Darcy number: uniform heating

at bottom wall

Figs. 2–5 illustrate the stream function and isotherm
contours of the numerical results for various Ra = 103–
106, Da = 10�5–10�3 and Pr = 0.71–10 when the bottom
wall is uniformly heated. In general, the fluid circulation
is strongly dependent on Darcy number as we have seen
in Figs. 2–5. Fig. 2 illustrates the stream function and tem-
perature contours for Da = 10�5 and Ra = 106, and the
flow is seen to be very weak as observed from stream func-
tion contours. Therefore, the temperature distribution is
similar to that with stationary fluid and the heat transfer
is due to purely conduction. During conduction dominant
heat transfer, the temperature contours with h = 0.1 occur
symmetrically near the side walls of the enclosure. The
other temperature contours with h P 0.2 are smooth
curves which span the entire enclosure and they are gener-
ally symmetric with respect to the vertical symmetric
line. As Darcy number increases to 10�4, the strength of
flow is increased at Ra = 106. As expected due to the cold
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vertical walls, fluids rise up from middle portion of the bot-
tom wall and flow down along the two vertical walls form-
ing two symmetric rolls with clockwise and anti-clockwise
rotations inside the cavity. The stronger circulation causes
the temperature contours to be concentrated near the side
walls and near the edges of bottom wall which may result
in greater heat transfer rate due to convection. Note that,
at Da = 10�4, the conduction dominant heat transfer mode
would occur upto Ra = 5 · 105.

During Da = 10�3, flow is a very strong function of Ra
and the conduction dominant heat transfer occurs upto
Ra = 7 · 104. During conduction dominant mode, the tem-
perature profile is similar to that in Fig. 2. At Da = 10�3

and Ra = 7 · 104, the circulation near the central regimes
are stronger and consequently, the temperature contour
with h = 0.2 (in Fig. 2) starts getting shifted towards the
side wall and they break into two symmetric contour lines
(Fig. 4). The presence of significant convection is also
exhibited in other temperature contours lines which start
getting deformed and pushed towards the side wall. The
conduction dominant heat transfer will be illustrated later
via average Nusselt number vs. Rayleigh number plot
and the critical Rayleigh number would demonstrate the
significant effect of convective heat transfer.

As Rayleigh number increases to 106 with Da = 10�3,
the buoyancy driven circulation inside the cavity is also
increased as seen from greater magnitudes of the stream
functions (Fig. 5). The circulations are greater near the cen-
ter and least at the wall due to no slip boundary conditions.
The greater circulation in each half of the box follows a
progressive wrapping around the centers of rotation, and
a more and more pronounced compression of the iso-
therms toward the boundary surfaces of the enclosures
occurs. Consequently, at Da = 10�3, the temperature gra-
dients near both the bottom and side walls tend to be sig-
nificant to develop the thermal boundary layer. Due to
greater circulations near the central core at the top half
of the enclosure, there are small gradients in temperature
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are shown via negative and positive signs of stream functions, respectively.
whereas a large stratification zone of temperature is
observed at the vertical symmetry line due to stagnation
of flow. Fig. 2 shows that the thermal boundary layer
develops approximately 75% within the cavity for
Da = 10�5, whereas for Da = 10�3, the isotherms presented
in Fig. 5 indicate that the thermal boundary layer almost
develops throughout the entire cavity. Comparative studies
for the increase of Pr from 0.71 to 10 show that the values
of stream function and isotherms in the core cavity
increase. Due to greater circulation at Pr = 10, the zone
of stratification of temperature at the central symmetric
line is reduced (figures are not shown).

5.3. Effects of Darcy number: non-uniform heating
at bottom wall

Stream function contours and isotherms are displayed in
Figs. 6 and 7 for Da = 10�4�10�3, Ra = 106 and Pr = 0.71
when the bottom wall is non-uniformly heated. As seen in
Figs. 2–5, uniform heating of the bottom wall causes a
finite discontinuity in Dirichlet type of boundary condi-
tions for the temperature distribution at the edges of the
bottom wall. In contrast, the non-uniform heating removes
the singularities at the edges of the bottom wall and pro-
vides a smooth temperature distribution in the entire
cavity. For Da = 10�4 and Pr = 0.71, the temperature con-
tours as seen in Fig. 6 are similar to that with uniform heat-
ing case as seen in Fig. 3. The conduction dominant heat
transfer mode is upto Ra = 5 · 105 which is similar to that
with uniform heating case. It is interesting to note that, the
temperature at the bottom wall is non-uniform and max-
ima in temperature occurs at the center. Therefore, the
greater heat transfer rate will occur at the center and the
detailed analysis will be illustrated in the following section.

At Da = 10�3, the circulation pattern is qualitatively
similar to the uniform heating case with the identical situ-
ation (Fig. 7). Due to non-uniform bottom heating, the
heating rate near the wall is generally lower which induce
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less buoyancy effect resulting in less thermal gradient
throughout the domain. The conduction dominant heat
transfer will occur upto Ra = 3 · 105 which is in contrast
with the uniform heating case where conduction regime is
valid within Ra = 7 · 104. The uniformity in temperature
distribution and least temperature gradient are still
observed at the central core regime within the top half of
the domain. The less buoyancy effect also leads to a large
zone of stratification of temperature at the vertical line of
symmetry (Fig. 7). However, compared to uniform heating
cases, the values of temperature contours are less near the
central and top portion of the enclosure for non-uniform
heating case. The greater values of temperature contours
are highly dense near the bottom wall which may indicate
a greater local heating rate compared to the uniform heat-
ing case as seen in Fig. 5.

5.4. Heat transfer rates: local and average

Nusselt numbers

Fig. 8 display the effects of Ra and Da on the local Nus-
selt numbers at the bottom and side walls (Nub, Nus) for
Pr = 0.71 and 10. For uniform heating of the bottom wall,
the heat transfer rate or Nub is very high at the edges of the
bottom wall due to the discontinuities present in the tem-
perature boundary conditions at edges and heat transfer
rate reduces towards the center of the bottom wall with
its minimum value at the center (Fig. 8(a)). On the con-
trary, for Da = 10�5 with non-uniformly heated bottom
wall, Nub increases from zero at both the edges of the bot-
tom wall towards the center with its maximum value at the
center. Further for Da P 10�4, the non-uniform heating
produces a sinusoidal type of local heat transfer rate with
its minimum values at the edges as well as at the center
of the bottom wall. The physical reason of this type of
behavior is due to the higher values of stream function
(i.e., high flow rate) for Da P 10�4 in the middles of the
first and second half of the cavity. Due to the variations
of Pr from 0.71 to 10, the local Nusselt number at the bot-
tom wall (Nub) increases slightly as seen in Fig. 8(a). It is
interesting to note that for all regimes of Darcy and Ray-
leigh numbers, the non-uniform heating enhances the heat
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transfer at the central regime only. The temperature con-
tours diverge from the corner points toward the central ver-
tical line for uniform heating cases and therefore local
Nusselt number is a monotonically decreasing function
with the distance. In contrast, for non-uniform heating
cases the temperature contours are compressed around
the intermediate zones between corner and the vertical line
of symmetry at the bottom wall and local Nusselt number
is maximum at around X = 0.4 and 0.6.

Fig. 8(b) illustrates the heat transfer rate at the side wall.
The local Nusselt number (Nus) is found to be decreasing
with distance at the side or cold wall for Da = 10�5,
Pr = 0.71 for both uniform and non-uniform heating cases.
It is interesting to note that, the heat transfer rate is ini-
tially decreased and later increased with distance for
Da P 10�4 with Pr = 0.71 and 10. At higher Rayleigh
number, the significant circulation as seen in Figs. 3–7
results in dense contours at the top portion of the side walls
and these dense temperature contours are in contrast with
the conduction dominant cases as seen in Fig. 2. Further, it
is observed that, the temperature contours are compressed
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towards the side walls away from the corner points at the
bottom specially for Da = 10�3. Therefore, the heat fluxes
are enhanced at the regimes away from bottom corner
points. The heat transfer rates are qualitatively similar,
but reduced for non-uniform bottom wall heating cases
as compared to the uniform heating cases. Similar to the
bottom wall, the local Nusselt number shows slightly
increased heat transfer at the top portion of the side wall
for Pr = 10.

The overall effects upon the heat transfer rates are dis-
played in Fig. 9(a)–(d), where the distributions of the aver-
age Nusselt number of bottom and side walls, respectively,
are plotted vs the logarithmic Rayleigh number. The aver-
age Nusselt numbers are obtained using Eqs. (30) and (31)
where the integral is evaluated using Simpson’s 1/3 rule.
Note that, Fig. 9(a) and (b) (Cases a and b) illustrate uni-
form heating cases and Fig. 9(c) and (d) (Cases c and d)
illustrate non-uniform heating cases. For all these cases,
it is observed that average Nusselt numbers for both the
bottom and side walls remain constant for Da = 10�5 dur-
ing the entire Rayleigh number regime upto Ra = 106. As
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of average Nusselt number vs. Rayleigh number for convection dominant
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Da increases, the conduction dominant heat transfer
regime is narrowed down as conduction dominance occurs
upto Ra = 5 · 105 and Ra = 7 · 104 for Da = 10�4 and
Da = 10�3, respectively, during uniform heating case. In
contrast for non-uniform heating case, Ra = 5 · 105 and
Ra = 3 · 105 are the critical Rayleigh numbers for
Da = 10�4 and Da = 10�3, respectively. Note that, larger
Rayleigh number regime of heat conduction mode corre-
sponding to smaller Darcy numbers produces overall lower
heat transfer rate both for uniform and non-uniform heat-
ing cases. The insets show the log–log plot for average Nus-
selt number vs. Rayleigh number for convection dominant
regimes. The log–log linear plot is obtained with more than
20 data set. A least square curve is fitted and the overall
error is limited within 1%. The following correlations with
Pr = 0.71 are obtained for cases a and b (uniform heating)
and c and d (non-uniform heating) as follows:

Cases a and b: uniform heating

Nub ¼ 2Nus

¼ 0:150Ra0:280; Ra P 5� 105; Da ¼ 10�4

¼ 0:316Ra0:265; Ra P 7� 104; Da ¼ 10�3:

ð32Þ

Cases c and d: non-uniform heating

Nub ¼ 2Nus

¼ 0:0022Ra0:543; Ra P 5� 105; Da ¼ 10�4

¼ 0:077Ra0:338; Ra P 3� 105; Da ¼ 10�3:

ð33Þ
6. Conclusions

The prime objective of the current investigations is to
study the effect of continuous and discontinuous thermal
boundary conditions on the flow and heat transfer charac-
teristics due to natural convection within a porous square
enclosure. The momentum transfer in the porous region
is modeled by using Darcy–Forchheimer law. The penalty
finite element method helps to obtain smooth solutions in
terms of stream function and isotherm contours for wide
ranges of Da, Pr and Ra with uniform and non-uniform
heating of the bottom wall. We have demonstrated the for-
mation of boundary layers for both the heating cases and it
is observed that thermal boundary layer is developed
approximately 75% within the cavity for uniform heating
whereas the boundary layer is approximately 60% for
non-uniform heating when Ra = 106, Da = 10�5, and
Pr = 0.71. The heat transfer rate is very high at the edges
of the bottom wall and decreases to a minimum value at
the center due to uniform heating which contrast the lower
heat transfer rate at the edges due to non-uniform heating
for Ra = 106 and Da P 10�4. We observed the conduction
dominant heat transfer modes for Ra 6 7 · 104 during
uniform heating of bottom wall whereas the conduction
dominant heat transfer is observed for Ra 6 3 · 105 for
non-uniform heating corresponding to Da = 10�4.
At the onset of convection dominant mode, the tem-
perature contour lines get compressed toward the side
walls and they tend to get deformed towards the upward
direction. During Ra = 106 and Da P 10�4, the thermal
boundary layer is developed near the bottom and side
walls and the central regime near the top surface has least
temperature gradient for both uniform and non-uniform
heating cases. The local Nusselt numbers at the bottom
and side walls represent various interesting heating fea-
tures. The local Nusselt number at the bottom wall is
least at the center for uniform heating and there are
two least heat transfer zones at the center and the corner
points for non-uniform heating. The non-uniform heating
exhibits greater heat transfer rates at the center of the
bottom wall than that with uniform heating case for all
Rayleigh number regimes. The local Nusselt number at
the side wall is found to be decreased with distance for
conduction dominant heat transfer whereas due to highly
dense contour lines near the top portion of the side wall,
the local Nusselt number is found to be increased for both
uniform and non-uniform heating cases. The average
Nusselt number illustrates overall lower heat transfer
rates for non-uniform heating cases. It is observed that,
the heat transfer is primarily due to conduction for
Da 6 10�5 irrespective of Ra and as Da increases, the
conduction dominant regime is shortened with Ra. The
average Nusselt number is found to be following power
law variation with Rayleigh number for convection dom-
inant regimes. The non-uniform or sinusoidal heating may
be employed in small regime followed by a uniform heat-
ing and this combination may be suitable to achieve
enhanced heat transfer effects. This analysis is a subject
of our ongoing research.
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